Home
Class 12
MATHS
[" Show that "Delta ABC" is an isosceles...

[" Show that "Delta ABC" is an isosceles triangle,"],[" if the determinant "],[[1+cos A,1+cos B],[cos^(2)A+cos A,cos^(2)B+cos B],[,1+cos C],[,cos^(2)C+cos C]|=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that DeltaABC is an isosceles triangle, if the determinant Delta=|(1,1,1),(1+cosA,1+cosB,1+cosC),(cos^(2)A+cosA,cos^(2)B+cosB,cos^(2)C+cosC)|=0 .

Show that DeltaABC is an isosceles triangle, if the determinant Delta=|(1,1,1),(1+cosA,1+cosB,1+cosC),(cos^(2)A+cosA,cos^(2)B+cosB,cos^(2)C+cosC)|=0 .

Show that the DeltaABC is an isosceles triangle if the determinant Delta=|{:(1,1,1),(1+cosA,1+cosB,1+cosC),(cos^2A+cosA,cos^2B+cosB,cos^2C+cosC):}|=0

If A , Ba n dC are the angels of a triangle, show that |[-1+cos B, cos C+cos B, cos B],[ cos C+cos A,-1+cos A ,cos A],[-1+cos B,-1+cos A,-1]|=0

If A,B and C are the angles of a triangle, then |[-1+cos B, cos C+ cos B, cos B],[cos C+ cos A,-1+cos A, cos A],[-1+cos B,-1+cos A,-1]|

In a Delta ABC, a (cos^2 B+cos^2 C)+cos A(c cos C+b cos B)=

In a Delta ABC,a(cos^(2)B+cos^(2)C)+cos A(c cos C+b cos B)=

In a triangle ABC,cos^(2)A+cos^(2)B+cos^(2)C=

In any triangle ABC, the valur of a (cos ^(2) B+ cos ^(2)C)+ cos A (b cos B+ c cos C) is-

In a triangle ABC, prove that: cos^4A+cos^4B+cos^4C= 3/2 + 2 cosA cosB cosC+ 1/2 cos 2A cos2B cos2C