Home
Class 12
MATHS
If alpha and beta are the real roots of ...

If `alpha` and `beta` are the real roots of the equation `x^2-(k-2)x +(k^2 + 3k + 5)=0,(k in R),`Then the maximum and minimum values of `alpha^2 + beta^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let x_1 and x_2 be the real roots of the equation x^2 -(k-2)x+(k^2 +3k+5)=0 then the maximum value of x_1^2+x_2^2 is

If alpha and beta are the real roots of the equation x^(2)-(k+1)x-(k+2)=0, then minimum value of alpha^(2)+beta^(2) is

If alpha and beta are the roots of the quadratic equation 2x ^(2) + 6x + k =0, where k lt 0, then what is the maximum value of (alpha)/(beta) + (beta)/(alpha) ?

Let x_(1) and x_(2) be the real roots of the equation x^(2)-(k-2)x+(k^(2)+3k+5)=0 then the maximum value of x_(1)^(2)+x_(2)^(2) is

Let alpha, beta be real roots of the quadratic equatin x ^(2) +kx+ (k^(2) +2k -4)=0, then the maximum value of (alpha ^(2) +beta ^(2)) is equal to :

Let alpha, beta be real roots of the quadratic equatin x ^(2) +kx+ (k^(2) +2k -4)=0, then the maximum value of (alpha ^(2) +beta ^(2)) is equal to :

If alpha,beta are the roots of the equation x^2-2x+4=0 , find alpha^(n)+beta^(n) for (a) n=3k, k in N

Let alpha, beta be ral roots of the quadratic equation x ^(2)+kx+ (k^(2) +2k-4) =0, then the minimum value of alpha ^(z)+beta ^(z) is equal to :

Let alpha, beta be ral roots of the quadratic equation x ^(2)+kx+ (k^(2) +2k-4) =0, then the minimum value of alpha ^(z)+beta ^(z) is equal to :