Home
Class 7
MATHS
("lim")(xvec0)[(sin(sgn(x)))/((sgn(x)))]...

`("lim")_(xvec0)[(sin(sgn(x)))/((sgn(x)))],` where`[dot]` denotes the greatest integer function, is equal to 0 (b) 1 (c) `-1` (d) does not exist

Promotional Banner

Similar Questions

Explore conceptually related problems

("lim")_(xvec0)[(sin(sgn(x)))/((sgn(x)))], where [dot] denotes the greatest integer function, is equal to (a)0 (b) 1 (c) -1 (d) does not exist

("lim")_(x->0)[(sin(sgn(x)))/((sgn(x)))], where [dot] denotes the greatest integer function, is equal to (a)0 (b) 1 (c) -1 (d) does not exist

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

("lim")_(xvec1)(xsin(x-[x]))/(x-1),w h e r e[dot] denotes the greatest integer function is equal to 0 (b) -1 (c) non-existent (d) none of these

("lim")_(xvec1)(xsin(x-[x]))/(x-1),w h e r e[dot] denotes the greatest integer function is equal to (a) 0 (b) -1 (c) not exist (d) none of these

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

Evaluate: ("lim")_(xvec0)(sinx)/x,w h e r e[dot] represents the greatest integer function.