Home
Class 12
MATHS
tan^(- 1)x+tan^(- 1)y=1/2sin^(- 1)(2(x+y...

`tan^(- 1)x+tan^(- 1)y=1/2sin^(- 1)(2(x+y)(1-x y))/((1+x^2)(1+y^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan ^(-1)x-tan ^(-1)y=sin ^(-1) ""(x-y)/(sqrt((1+x^(2))(1+y^(2)))

Prove that: tan^(-1)((1-x)/(1+x))-tan^(-1)((1-y)/(1+y))=sin^(-1)((y-x)/(sqrt((1+x^2)(1+y^2))))

Prove that: tan^(-1)((1-x)/(1+x))-tan^(-1)((1-y)/(1+y))=sin^(-1)((y-x)/(sqrt((1+x^2) (1+y^2))))

Prove that: tan^(-1)((1-x)/(1+x))-tan^(-1)((1-y)/(1+y))=sin^(-1)((y-x)/(sqrt((1+x^(2))(1+y^(2)))))

Prove that tan^(-1)((1-x)/(1+x))-tan^(-1)((1-y)/(1+y))=sin^(-1)((y-x)/(sqrt(1+x^(2))*sqrt(1+y^(2))))

Prove the following "tan"^(-1)((1-x)/(1+x))-"tan"^(-1)((1-y)/(1+y))="sin"^(-1)((y-x)/(sqrt(1+x^(2))sqrt(1+y^(2)))) .

tan ^(-1)""(1-x)/(1+x)- tan ^(-1 )""(1-y)/(1+y) = sin ^(-1) ""(y-x)/(sqrt((1+x^(2))(1+y^(2)))

tan[1/2sin^(-1)((2x)/(1+x^(2)))-1/2cos^(-1)((1-y^(2))/(1+y^(2)))]=

Find the value of: tan(1/2 [sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))]),|x| 0 and x y < 1

"tan"1/2["sin"^(-1)(2x)/(1+x^(2))+"cos"^(-1)(1-y^(2))/(1+y^(2))]