Home
Class 12
MATHS
[" 0.Let "g(x)=e^(f(x))" and "f(x+1)=x+f...

[" 0.Let "g(x)=e^(f(x))" and "f(x+1)=x+f(x)AA x in R." If "],[n in I^(+)," then "(g'(n+(1)/(2)))/(g(n+(1)/(2)))-(g'((1)/(2)))/(g((1)/(2)))=],[" (a) "2(1+(1)/(2)+(1)/(3)+cdots+(1)/(n))],[" (b) "2(1+(1)/(3)+(1)/(5)+cdots(1)/(2n-1))],[" (d) "1],[" (d) "1]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let g(x)=e^(f(x)) and f(x+1)=x+f(x)AA x in R If n in I^(+), then (g'(n+(1)/(2)))/(g(n+(1)/(2)))-(g'((1)/(2)))/(g((1)/(2)))=2(1+(1)/(2)+(1)/(3)+...+(1)/(n))2(1+(1)/(3)+(1)/(5)+...(1)/(2n-1))n1

Let g(x)=e^(f(x))a n df(x+1)=x+f(x)AAx in Rdot If n in I^+,t h e n(g^(prime)(n+1/2))/(g(n+1/2))-(g^(prime)(1/2))/(g(1/2))= 2(1+1/2+1/3++1/n) 2(1+1/3+1/5+1/(2n-1)) n 1

Let g(x)=e^(f(x))a n df(x+1)=x+f(x)AAx in Rdot If n in I^+,t h e n(g^(prime)(n+1/2))/(g(n+1/2))-(g^(prime)(1/2))/(g(1/2))= 2(1+1/2+1/3++1/n) 2(1+1/3+1/5+1/(2n-1)) n 1

Let f(x)=(1)/(1+x^(2)) and g(x) is the inverse of f(x) ,then find g(x)

Let f(x) = e^(x)g(x) , g(0)=2 and g (0)=1 , then find f'(0) .

If f(x)=x+tan x and g(x) is inverse of f(x) then g'(x) is equal to (1)(1)/(1+(g(x)-x)^(2))(2)(1)/(1-(g(x)-x)^(2))(1)/(2+(g(x)-x)^(2))(4)(1)/(2-(g(x)-x)^(2))

let f(x)=e^x ,g(x)=sin^(- 1) x and h(x)=f(g(x)) t h e n f i n d (h^(prime)(x))/(h(x))

Let f(x)=x^(2)+xg^(2)(1)+g'(2) and g(x)=f(1)*x^(2)+xf'(x)+f''(x) then find f(x) and g(x)

Let f(x)=x^2+xg^2(1)+g^''(2) and g(x)=f(1).x^2+xf'(x)+f''(x), then find f(x) and g(x).