Home
Class 11
MATHS
[4*x+[fA,B,C" are angles in a triange,th...

[4*x+[fA,B,C" are angles in a triange,then prove that "],[cos A+cos B-cos C=-1+4cos(A)/(2)cos(B)/(2)sin(C)/(2)(TS-Mar-19) " (May-ZOOG "],[" Sol "" Given that "A,B" ,C are angles in triance)."]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A,B,C are the angles of a triangle then prove that cos A+cos B-cos C=-1+4cos((A)/(2))cos((B)/(2))sin((C)/(2))

If A,B,C are the angles of a triangle then prove that cosA+cosB-cosC=-1+4cos(A/2)cos(B/2)sin(C/2)

If A,B,C are the angles of a triangle then prove that cosA+cosB-cosC=-1+4cos(A/2)cos(B/2)sin(C/2)

IF A,B,C are angles in the triangle, then prove that cosA+cosB-cosC=-1+4cos""A/2.cos""B/2.sin""C/2

If A, B, C are angles in a triangle , prove that sin A+ sin B -sin C =4sin. (A)/(2)sin. (B)/(2) cos. (C)/(2)

IF A,B,C are angles of a triangle , Prove that cos2A+cos 2B+cos 2C=-4cosAcosBcosC-1

If A , B , C are angles in a triangle , then prove that sin A + sin B + sin C =4 cos. (A)/(2) cos . (B)/(2) cos .(C)/(2)

If A, B, C are angles of a triangle , prove that cos 2A - cos 2B + cos 2C =1 -4 sin A cos B sin C

If A, B, C are angles of a triangle , prove that cos 2A+cos 2B -cos 2C=1-4 sin A sin B cos C

If A+B+C=pi then prove that cos A+cos B+cos C=1+4sin((A)/(2))*sin((B)/(2))*sin((C)/(2))