Home
Class 12
MATHS
logs(sqrt(x)+1/sqrt(x))...

`logs(sqrt(x)+1/sqrt(x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

log(sqrt(x)+1/sqrt(x))

If y=log(sqrt(x)+(1)/(sqrt(x))). Prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=log(sqrt(x)+(1)/(sqrt(x)))^(2), then , x(x+1)^(2)y_(2)+(x+1)^(2)y_(1) is

If y=log(sqrt(x)+sqrt(1/x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

y=log((sqrt(x+1)+1]/(sqrt(x+1)-1))

If int log(sqrt(1-x)+sqrt(1+x))dx=xf(X)+Ax+Bsin^(-1)x+c , then-

If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C , then

int_( then )^( If )sqrt((1-x)/(1+x))(dx)/(x)=log((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))+2f(x)+C

int_(0)^(1)log(sqrt(1-x)+sqrt(1+x))dx equals: