Home
Class 11
PHYSICS
x(1) = 3 sin omega t x(2) = 5 sin ...

`x_(1) = 3 sin omega t`
` x_(2) = 5 sin (omega t + 53^(@))`
`x_(3) = - 10 cos omega t`
Find amplitude of resultant SHM.

Promotional Banner

Similar Questions

Explore conceptually related problems

x_(1) = 5 sin omega t x_(2) = 5 sin (omega t + 53^(@)) x_(3) = - 10 cos omega t Find amplitude of resultant SHM.

x_(1) = 5 sin omega t x_(2) = 5 sin (omega t + 53^(@)) x_(3) = - 10 cos omega t Find amplitude of resultant SHM.

x_(1)= 5 sin (omega t + 30^(@)) , x2 = 10 cos ( omega t) Find amplitude of resultant SHM.

When two waves y _(1) =A sin (omega t + (pi)/(6)) and y _(2) = A cos (omega t) superpose, find amplitude of resultant wave.

Two simple harmonic motions are given by x_(1) = a sin omega t + a cos omega t and x_(2) = a sin omega t + (a)/(sqrt3) cos omega t The ratio of the amplitudes of first and second motion and the phase difference between them are respectively

If i_(1) = 3 sin omega t and i_(2) =6 cos omega t , then i_(3) is

x_(1) = 3 sin omega t , x_(2) = 4 cos omega t . Find (i) amplitude of resultant SHM, (ii) equation of the resultant SHM.

x_(1) = 3 sin omega t , x_(2) = 4 cos omega t Find (i) amplitude of resultant SHM, (ii) equation of the resultant SHM.

x_(1) = 3 sin omega t ,x_(2) = 4 cos omega t Find (i) amplitude of resultant SHM, (ii) equation of the resultant SHM.

If i_(1)=3 sin omega t and (i_2) = 4 cos omega t, then (i_3) is