Home
Class 11
MATHS
Find domain of f(x) =1/(sqrt([x]^2-[x]-...

Find domain of `f(x) =1/(sqrt([x]^2-[x]-6)` where `[x]` is greatest integer `leqx`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain of f(x)=1/sqrt(x^2 -x -6)

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

The domain of f(x)=sqrt([x]^(2)-7[x]+12) (where [.] denotes greatest integer function) is

The domain of the function f(x)=1/(sqrt([x]^2-2[x]-8)) is, where [*] denotes greatest integer function

Find the domain of f(x)=sqrt(([x]-1))+sqrt((4-[x])) (where [] represents the greatest integer function).

The domain of the function f(x)=(1)/(sqrt([x]^(2)-2[x]-8)) is,where [^(*)] denotes greatest integer function