Home
Class 9
MATHS
If p(x)=8x^(3)-6x^(2)-4x+3 and g(x) = (...

If `p(x)=8x^(3)-6x^(2)-4x+3 and g(x) = (x)/(3)-(1)/(4)` then check whether g (x) is a factor of p(x) or not.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let p(x)=x^(3)-x+1andg(x)=2-3x , Check whether p(x) is a multiple of g (x) or not .

Check whether x-4 is a factor of x^(3) - 3x^(2) - 6x + 8 or not.

Check whether x=1 is a factor of x^(3) + 9x^(2) - 4x -12 or not.

Check whether x+2 is a factor polynomial x^(3)+8x^(2)+9x-6 ?

Check whether x+2 is a factor polynomial x^(3)+8x^(2)+9x-6 ?

Check whether x^(2)+2x+2 is a factor of x^(4)-x^(3)-3x^(2)-4x+2 or not.

If p(x)=2x^(3)-11x^(2)-4x+5andg(x)=2x+1 , show that g(x) is not a factor of p(x).

If p(x)=x^(3)-5x^(2)+4x-3 andg(x)=x-2 show that p(x) is not a multiple of g(x).

Check whether (x-3) is a factor of the polynomial 2 x^3-x^2-3 x+4

check whether g(x) is a factor of f(x) or not f(x)=x^5+3x^4−x^3−3x^2+5x+15 , g(x)=x+3