Home
Class 12
MATHS
If x=sint , y=sinp t , prove that (1-x^2...

If `x=sint` , `y=sinp t` , prove that `(1-x^2)\ (d^2y)/(dx^2)-x(dy)/(dx)+p^2\ y=0` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sint and y=sinp t , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.

If x=sint and y=sinp t , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.

If x=sint and y=sinp t , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.

If x=sint ,y=sinpt , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.

If x=sint,y=sinpt , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2 y=0 .

If y=sin^(-1) x, prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0

If x=sin t and y=sin pt, prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+p^(2)y=0

If x=sin t,y=sin2t, prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+4y=0

If x=sint ,y=sinp t ,"p r o v et h a t" (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.

If y=sin^(-1)x, prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0