Home
Class 11
MATHS
lim(h rarr 0) (sec(x+h)-secx)/h =secx ta...

`lim_(h rarr 0) (sec(x+h)-secx)/h =secx tanx`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(h rarr0)(sin(x+h)-sinx)/(h)

Prove : underset(hrarr0)"lim"(sec(x+h)-secx)/(h)=sec x tanx

lim_(h rarr 0) (sqrt(x+h) - sqrtx)/h =

lim_(h rarr0)(sin(x+h)-sin x)/(h)

lim_(h rarr0) (cos(x+h)-cos x)/(h)

lim_(h rarr0)(sin h)/(h)

int[lim_(hrarr0)(sec(x+h)-secx)/(h)]dx=

lim_(h rarr0)h sin(1/h)

lim_(h rarr0)(log(x+h)-log x)/(h)