Home
Class 12
MATHS
int0^oo log(1+x^2)/(1+x^2)dx=...

`int_0^oo log(1+x^2)/(1+x^2)dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^oo logx/(1+x^2)dx= (A) log2 (B) pi/2 (C) 0 (D) none of these

" 8."int_(0)^(oo)(log x)/(1+x^(2))dx

int_0^1log(1+x)/(1+x^2)dx

The value of the integral int_0^(oo) log(x+1/x) (dx)/(x^2 +1) is

The value of integral int_0^(oo) (x log x)/((1 + x^2)^2) dx is :

Let A=int_(0)^(oo)(log x)/(1+x^(3))dx Then find the value of int_(0)^(oo)(x log x)/(1+x^(3))dx in terms of A

Show that int_0^1(log(1+x))/(1+x^2)dx=pi/8log2

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

If P=int_0^oo(x^2)/(1+x^4)dx ; Q=int_0^oo(x dx)/(1+x^4)"and"R=int_0^oo(dx)/(1+x^4), then prove that :