Home
Class 14
MATHS
" aff "a=(sqrt(3))/(2)" ad,al "sqrt(1+a)...

" aff "a=(sqrt(3))/(2)" ad,al "sqrt(1+a)+sqrt(1-a)=4" and "

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify (i) (4+ sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/(4+sqrt(5)) (ii) (1)/(sqrt(3) + sqrt(2)) - (2)/(sqrt(5)-sqrt(3)) -(2)/(sqrt(2) - sqrt(5)) (iii) (2+sqrt(3))/(2-sqrt(3)) + (2-sqrt(3))/(2+sqrt(3)) + (sqrt(3)-1)/(sqrt(3)+1) (iv) (2+sqrt(6))/(sqrt(2)+sqrt(3))+(6sqrt(2))/(sqrt(6)+sqrt(3)) -(8sqrt(3))/(sqrt(6)+sqrt(2))

Evaluate : 1/( 1 + sqrt (2) ) + 1/( sqrt(2) + sqrt (3) ) + 1/ ( sqrt(3) + sqrt (4) )

The sum of 1/(sqrt(2)+1) + 1/(sqrt(3) + sqrt(2)) + 1/(sqrt(4) + sqrt(3)) +.....1/(sqrt(100) + sqrt(99)) is equal to:

The sequence (1)/(sqrt(3)), (1)/(sqrt(3)+sqrt(2)), (1)/(sqrt(3) + 2 sqrt(2)) form an ........ .

(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))

If i=sqrt(-)1, then 4+5(-(1)/(2)+(i sqrt(3))/(2))^(334)+3(-(1)/(2)+(i sqrt(3))/(2))^(365) is equal to (1)1-i sqrt(3)(2)-1+i sqrt(3)(3)i sqrt(3)(4)-i sqrt(3)

Arrange the following in decending order sqrt(3) - sqrt(2), sqrt(4) - sqrt(3), sqrt(5) - sqrt(4), sqrt(2) - 1 .

1/(sqrt3 + sqrt2) + 1/(sqrt3 -sqrt2)=

x=sqrt(1+2sqrt(1+3sqrt(1+4sqrt(1+...))))