Home
Class 12
MATHS
[" Prove that "],[qquad 2tan^(-1)(csc ta...

[" Prove that "],[qquad 2tan^(-1)(csc tan^(-1)x-tan cot^(-1)x)=tan^(-1)x(x!=0)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Prove that 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x (x != 0)

Prove that: tan^(-1)(x)=2tan^(-1)(cosec tan^(-1)x-tan cot^(-1)x)

tan^(-1)(cot x)-tan^(-1)(cot2x)=

Prove that tan(2tan^(-1)x)=2tan(tan^(-1)x+tan^(-1)x^(3))

tan^(-1)(cot x)+cot^(-1)(tan x)

The value of 2tan^(-1)(cos ec tan^(-1)x-tan cot^(-1)x) is equal to (a)cot ^(-1)x( b ) (cot^(-1)1)/(x) (c)tan ^(-1)x (d) none of these

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .