Home
Class 12
MATHS
int(0)^(1)(log(1+n))/(1+n^(2))dn=(pi)/(8...

int_(0)^(1)(log(1+n))/(1+n^(2))dn=(pi)/(8)log2

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)(log|1+x|)/(1+x^(2))dx=(pi)/(8)log2

Using property of define integrals, prove that : int_(0)^(1) (log(1+x))/(1+x^(2))=(pi)/8log2

Show that int_0^1(log(1+x))/(1+x^2)dx=pi/8log2

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

int_(0)^(1)(logx)/(sqrt(1-x^(2)))dx=-(pi)/(2)(log2)

Prove that int_(0)^((pi)/(4))log(1+tanx)dx=(pi)/(8)log2

int_(0)^(1)((sin^(-1)x)/(x))dx=(pi)/(2)(log2)

int_(0)^(1)cot^(-1)(1-x+x^(2))dx=(1)(pi)/(2)-log2(2)(pi)/(2)+log2(3)pi-log2(4)pi+log2

Prove that int_(0)^(pi/4)log(1+tanx)dx=(pi)/(8) log2.

The value of int_(0)^(1)(8log(1+x))/(1+x^(2))dx is: (1)pi log2 (2) (pi)/(8)log2(3)(pi)/(2)log2(4)log2