Home
Class 12
MATHS
[" 66" " If "g(x)=(x^(2)+2x+3)f(x),f(0)=...

[" 66" " If "g(x)=(x^(2)+2x+3)f(x),f(0)=5" and "lim_(x rarr0)(f(x)-5)/(x)=4," then "g'(0)" is equal "],[[" (A) "22," (B) "20],[" (C) "18]]

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(2^(5x)-1)/(x)

If g(x) = (x^(2)+2x+3) f(x) and f(0) = 5 and lim_(x rarr 0) (f(x)-5)/(x) = 4, then g'(0) =

lim_(x rarr0)(1+2x)^(5/x)

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=

lim_(x rarr 0) (sin(4x)/(5x) )=

lim_(x rarr 0) (3^(x)-2^(x))/x=

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

lim_(x rarr0)(x)/(|x|+x^(2)) equals

f(0)=0=g(0) and f'(0)=6=g'(0)thenlim_(x rarr0)(f(x))/(g(x))=

If f(x)=|x|, prove that lim_(x rarr0)f(x)=0