Home
Class 12
MATHS
If f(x)=log((x^2-5x+6)/(x^2+x+1))+sqrt(...

If `f(x)=log((x^2-5x+6)/(x^2+x+1))+sqrt(1/([x^2-1])])` (Where [.] is greatest integer), Then domain of function `f(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Find domain of f(x)=(1)/(sqrt([x]^(2)-[x]-6)) where [x] is greatest integer <=x

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Range of f(x)=[1/(log(x^(2)+e))]+1/sqrt(1+x^(2)), where [*] denotes greatest integer function, is

Range of f(x)=[1/(log(x^(2)+e))]+1/sqrt(1+x^(2)), where [*] denotes greatest integer function, is

Range of f(x)=[1/(log(x^(2)+e))]+1/sqrt(1+x^(2)), where [*] denotes greatest integer function, is

Range of f(x)=[1/(log(x^(2)+e))]+1/sqrt(1+x^(2)), where [*] denotes greatest integer function, is

The domain of the function f(x)=(1)/([x^(2)-1] is (where [.] is greatest integer function)

The domain of the function f(x)=log_(e){sgn(9-x^(2))}+sqrt([x]^(3)-4[x]) (where [.] represents the greatest integer function is