Home
Class 12
MATHS
[" tan'n "n+cot^(-1)(n+1)" is equal to "...

[" tan'n "n+cot^(-1)(n+1)" is equal to "(n>0)" : "],[[" (A) "cot^(-1)(n^(2)+n+1)," (B) "cot^(-1)(n^(2)-n+1)," (C) "tan^(-1)(n^(2)+n+1)," (D) None of these "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)n+cot^(-1)(n+1)=tan^(-1)(n^(2)+n+1)

tan^(-1)(m/n)+tan^(-1)((n-m)/(n+m))=?

sum_(n=1)^(n)tan^(-1)((n)/(n))

Show that tan ^(-1) n+cot ^(-1)(n+1)=tan ^(-1)(n^2+n+1)

tan^(-1)""(m)/(n)-tan^(-1)""(m-n)/(m+n) is equal to a) tan^(-1)""(n)/(m) b) tan^(-1)""(m+n)/(m-n) c) (pi)/(4) d) tan^(-1)((1)/(2))

If x!=n and cot^(-1)x+cot^(-1)(n^(2)-x+1)=cot^(-1)(n-1) then x=

sum_(n=1)^(oo)tan^(-1)((8)/(4n^(2)-4n+1)) is equal to

Tan^(-1)(m/n)-Tan^(-1)((m-n)/(m+n))=

sum_(r=1)^(n) tan^(-1)(2^(r-1)/(1+2^(2r-1))) is equal to a) tan^(-1)(2^n) b) tan^(-1)(2)^n-pi/4 c) tan^(-1)(2^(n+1)) d) tan^(-1)(2^(n+1))-pi/4