Home
Class 11
MATHS
Putting z=x-pi/4, show that lim(x->pi/4)...

Putting `z=x-pi/4`, show that `lim_(x->pi/4)(1-tanx)/(1-sqrt(2) sinx)=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following limit: (lim)_(x->pi/4)(1-t a n x)/(1-sqrt(2)sinx)

Putting z=x-(pi)/(4)" show that "underset(xrarr(pi)/(4))"lim"(1-tanx)/(1-sqrt(2)sinx)=2.

lim_(x->(pi/2)) (1-sinx)tanx =

lim_(x->(pi/2)) (1-sinx)tanx =

Evaluate : lim_(xrarrpi/4)(1-tanx)/(x-pi/4)

Evaluate the following limits: lim_(xrarr(pi)/(4))(1-tanx)/(1-sqrt2sinx)

lim_(x->pi/4)(2sqrt(2)-(cosx+sinx)^3)/(1-sin2x)=

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is