Home
Class 12
MATHS
Prove that [veca+vecb,vecb+vecc,vecc+vec...

Prove that `[veca+vecb,vecb+vecc,vecc+veca]=2[veca,vecb,vecc]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that [veca+vecb vecb+vecc vecc+veca]=2[vecavecbvecc]

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

[veca+2vecb-vecc,veca-vecb,veca-vecb-vecc]=

[veca+2vecb-vecc,veca-vecb,veca-vecb-vecc] =

Prove that {(vecb+vecc)xx(vecc+veca)}.(veca+vecb)=2[veca,vecb,vecc]