Home
Class 11
MATHS
Putting x =theta -pi/4 prove that lim(th...

Putting `x =theta -pi/4` prove that `lim_(theta->pi/4)(sin theta - cos theta)/(theta -pi/4)=sqrt(2)`

Text Solution

Verified by Experts

`x = theta - pi/4 => theta = x+pi/4`
So, given limit becomes,
`L.H.S. = Lim_(x->0) (sin(x+pi/4) - cos(x+pi/4))/x`
`= Lim_(x->0) ((sinx1/sqrt2+cosx1/sqrt2) - (cosx1/sqrt2 - sinx1/sqrt2))/x`
`= Lim_(x->0) 2*1/sqrt2 sinx/x`
`=sqrt2**1 = sqrt2 = R.H.S.`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(0 rarr pi/4) (sin theta. cos theta)/(theta-pi/4)=

Putting x=theta-(pi)/(4)" prove that "underset(thetararr(pi)/(4))"lim"(sintheta-costheta)/(theta-(pi)/(4))=sqrt(2).

lim_(theta rarr pi)((sqrt(2)-cos theta-sin theta)/((4 theta-pi)^(2))

Evaluate the following limit : Lim_(theta to pi/4) (sin theta -cos theta)/(theta-1/4pi)

Prove that : cos theta- sin theta= sqrt2 cos (theta+ pi/4) .

evaluate lim_(theta rarr(pi)/(4))(sqrt(2)-cos theta-sin theta)/((4 theta-pi)^(2))

The value of underset(theta to -pi/4)lim (cos theta +sin theta)/(theta+pi/4) is

lim_(theta rarr pi/2) (1-sin theta )/((pi/2 - theta) cos theta)=

Prove that cos^2(pi/4-theta)-sin^2(pi/4-theta)=sin 2theta