Home
Class 12
MATHS
Domain of f(x)= sqrt([x]-1+x^2) ; where...

Domain of `f(x)= sqrt([x]-1+x^2)` ; where [.] denotes the greatest integer function, is

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of f(x)=sqrt([x]^(2)-7[x]+12) (where [.] denotes greatest integer function) is

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If f(x)=[2x], where [.] denotes the greatest integer function,then

If domain of f(x) is [-1,2] then domain of f(x]-x^(2)+4) where [.] denotes the greatest integer function is

The domain of definition of the function f(x)=(1)/(sqrt(x-[x])), where [.] denotes the greatest integer function,is:

The domain of the function f(x)=(1)/(sqrt((x)-[x])) where [*] denotes the greatest integer function is

The domain of function f(x)=sqrt(log_([x])|x|) (where denotes greatest integer function),is