Home
Class 12
MATHS
Prove that 3 tan^(-1) x= {(tan^(-1) ((...

Prove that
`3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}`

Promotional Banner

Similar Questions

Explore conceptually related problems

If -(1)/sqrt(3) lt x lt (1)/sqrt(3), then tan^(-1) (3x-x^(3))/(1-3x^(2)) equals

Find (dy)/(dx) , if y = tan^(-1) ((3x - x^3)/(1 - 3x^2)) , (-1)/(sqrt3) lt x lt 1/(sqrt(3))

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if x>(1)/(sqrt(3))

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if x<-(1)/(sqrt(3))

If x gt (1)/sqrt(3) then tan^(-1) (3x-x^(3))/(1-3x^(2)) equals

If x lt -(1)/sqrt(3) , then tan^(-1)(3x-x^(3))/(1-3x^(2)) equals

Integrate : int tan^(-1) [(3x-x^(3))/(1-3x^(2))]dx [-(1)/(sqrt(3))lt x lt(1)/(sqrt(3))]

If y = tan ^(-1) (( 3 x - x^(3))/( 1 - 3 x^(2))) , - (1)/( sqrt(3)) lt x lt (1)/( sqrt(3)) , then find ( dy)/( dx)

y = tan ^ (- 1) [(3x-x ^ (3)) / (1-3x ^ (2))], - (1) / (sqrt (3))