Home
Class 12
MATHS
The range of the function f(x) = log(cos...

The range of the function `f(x) = log_(cosec^2 (7pi)/3) (4^x – 2^x +1)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function is f(x)=log_(5)(25-x^(2)) is

The range of the function f(x) = log_(3) (5+4x - x^(2)) , is

The range of the function f(x) = log_(3) (5+4x - x^(2)) , is

Find the range of the function f(x) =log|4-x^(2)|

The range of the function f(x) = log_(e) (3x^(2) + 4) is equal to

Range of the function f(x)=log_(e)sqrt(4-x^(2)) is

Range of the function f(x)=log_(0.5)(3x-x^(2)-2)

The range of the function f(x)=log_(e)(3x^(2)+4) is equal to

The range of the function f(x)=log_(e)(3x^(2)+4) is equal to

The range of the function f(x) = log_(sqrt5)(3 + cos ((3pi)/4 + x) + cos ((pi)/4 + x) + cos ((pi)/4 - x) - cos ((3pi)/4 - x)) is :