Home
Class 12
MATHS
[" Let "f(x)=5-|x-2|" and "g(x)=|x+1|,x ...

[" Let "f(x)=5-|x-2|" and "g(x)=|x+1|,x in R." If "f(x)" attains "],[" maximum value at "alpha" and "g(x)" attains minimum value at "beta,],[" then "lim_(x rarr-alpha beta)((x-1)(x^(2)-5x+6))/(x^(2)-6x+8)" is equal to "],[[" (a) "-1/2," (b) "1/2]],[[" (a) "-1/2," (b) "1/2," (c) "-3/2," (d) "3/2]],[" (a) "-1/2quad " (b) "1/2," (c) "-3/2quad " (d) "3019)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=5-|x-2| and g(x)=|x+1|, x in R . If f(x)n attains maximum value at alpha and g(x) attains minimum value of beta , then lim_(xto-alpha beta) ((x-1)(x^(2)-5x+6))/(x^(2)-6x+8) is equal to

Let f(x)=5-|x-2| and g(x)=|x+1|, x in R . If f(x)n artains maximum value at alpha ang g(x) attains minimum value of beta , then lim_(xto-alpha beta) ((x-1)(x^(2)-5x+6))/(x^(2)-6x+8) is equal to

Let f(x)=5-|x-2| and g(x)=|x+1|, x in R . If f(x) attains maximum value at alpha ang g(x) attains minimum value of beta , then underset(xto-alpha beta)lim((x-1)(x^(2)-5x+6))/(x^(2)-6x+8) is equal to (a) -1/2 (b) -3/2 (c) 1/2 (d) 3/2

Let f(x)=5-[x-2]g(x)=[x+1]+3 If maximum value of f(x) is alpha& minimum value of f(x) is beta then lim_(x rarr(alpha-beta))((x-3)(x^(2)-5x+6))/((x-1)(x^(2)-6x+8)) is

Let f(x)=5-[x-2] g(x)=[x+1]+3 If maximum value of f(x) is alpha & minimum value of f(x) is beta then underset(xrarr(alpha-beta))lim ((x-3)(x^(2)-5x+6))/((x-1)(x^(2)-6x+8)) is (A) -1/2 (B)1/2 (C)3/2 (D)-3/2

If f(x) = | x | + [ x ] , then f( -3/2 ) + f( 3/2 ) is equal to : ( a ) 1 ( b ) -1/2 ( c ) 2 ( d ) 1/2

Let f(x)=|cosx x 1 2sinx x2xsinx x x| , then (lim)_(x->0)(f(x))/(x^2) is equal to (a) 0 (b) -1 (c) 2 (d) 3

If f(x)=lim_(n->oo)((x^2+a x+1)+x^(2n)(2x^2+x+b))/(1+x^(2n))and lim_(x->+-1)f(x) exist, then The value of b is (a) -1 (b). 1 ( c.) 0 (d). 2

If alpha,beta are minimum and maximum values of f(x)= (x^(2)-x+1)/(x^(2)+x+1) respectively then int_(-alpha)^((1)/(beta))(x^(3)+x+5)*dx=