Home
Class 11
MATHS
Prove the following by the principle of ...

Prove the following by the principle of mathematical induction: `a+(a+d)+(a+2d)++(a+(n-1)d)=n/2[2a+(n-1)d]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following by using the Principle of mathematical induction AA n in N 2^(n+1)>2n+1

Prove the following by the principle of mathematical induction: 1+3+3^(2)++3^(n-1)=(3^(n)-1)/(2)

Prove the following by the principle of mathematical induction: 1+3+3^2++3^(n-1)=(3^n-1)/2

Prove the following by the principle of mathematical induction: 1+2+2^(7)=2^(n+1)-1 for all n in N

Prove the following by the principle of mathematical induction: 1^2+2^2+3^2++n^2=(n(n+1)(2n+1))/6

Prove the following by the principle of mathematical induction: 1^2+2^2+3^2++n^2=(n(n+1)(2n+1))/6

Prove the following by the principle of mathematical induction: 1^2+2^2+3^2++n^2=(n(n+1)(2n+1))/6

Prove the following by the principle of mathematical induction: \ 1. 2+2. 3+3. 4++n(n+1)=(n(n+1)(n+2))/3

Prove the following by the principle of mathematical induction: 1^(2)+2^(2)+3^(2)++n^(2)=(n(n+1)(2n+1))/(6)

Prove the following by the principle of mathematical induction: \ x^(2n-1)+y^(2n-1) is divisible by x+y