Home
Class 12
MATHS
If f(x)=sin^2(pi/8+x/2)-sin^2(pi/8-x/2) ...

If `f(x)=sin^2(pi/8+x/2)-sin^2(pi/8-x/2)` then period of `f(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sin^(2)((pi)/8 + (x)/2) -sin^2((pi)/8-(x)/(2)) , then the period of f is

If f(x)=sin^(2)((pi)/(8)+(x)/(2))-sin^(2)((pi)/(8)-(x)/(2)) then the period of f is

f(x)+sin xf(x+pi)=sin^(2)x

If f(x)=(sin^(2)x+4sin x+5)/(2sin^(2)x+8sin x+8) then range of f(x) is

int[sin^2((9pi)/8+x/4)-sin^2((7pi)/8+x/4)]dx

int[sin^2((9pi)/8+x/4)-sin^2((7pi)/8+x/4)]dx

Evaluate : sin^(2) (pi/8 +x/2) - sin^(2) (pi/8 - x/2)

The period of f(x)=(sin(pi x))/(2)+2(cos(pi x))/(3)-(tan(pi x))/(4) is

If period of function f(x)=(2sin x)/(sin((x)/(2))) is k pi then value of k is