Home
Class 12
MATHS
[" 21.A hyperbola,having the transverse ...

[" 21.A hyperbola,having the transverse axis of length "2sin theta" ,is confocal with the ellipse "],[3x^(2)+4y^(2)=12" .Then,its equation is (Single option correct) "],[[" a "x^(2)csc^(2)theta-y^(2)sec^(2)theta=1," id "x^(2)sec^(2)theta-y^(2)csc^(2)theta=1],[" c "x^(2)sin^(2)theta-y^(2)cos^(2)theta=1," id "x^(2)cos^(2)theta-y^(2)sin^(2)theta=1]]

Promotional Banner

Similar Questions

Explore conceptually related problems

A hyperbola, having the transverse axis of length 2 sin theta , is confocal with the ellipse 3x^(2) + 4y^(2) = 12 . Then its equation is

A hyperbola having the transverse axis of length 2 sin theta is confocal with the ellipse 3x^(2)+4y^(2)=12. Then its equation is

A hyperbola having the transverse axis of length 2sin theta is confocal with the ellipse 3x^(2)+4y^(2)=12 .Then its equation is x^(2)csc^(2)theta-y^(2)sec^(2)theta=1x^(2)sec^(2)theta-y^(2)cos ec^(2)theta=1x^(2)sin^(2)theta-y^(2)cos^(2)theta=1x^(2)cos^(2)theta-y^(2)sin^(2)theta=1

A hyperbola having the transverse axis of length 2 sin theta , is confocal with the ellipse 3x^2+4y^2=12. Then show that the equation of this hyperbola is (x^(2))/(sin^(2) theta)-y^(2)/(cos^(2) theta)=1 .

A hyperbola having the transverse axis of length 2sintheta is confocal with the ellipse 3x^2+4y^2=12 . Then its equation is (a) x^2cos e c^2theta-y^2sec^2theta=1 (b) x^2sec^2theta-y^2cos e c^2theta=1 (c) x^2sin^2theta-y^2cos^2theta=1 (d) x^2cos^2theta-y^2sin^2theta=1

A hyperbola having the transverse axis of length 2sintheta is confocal with the ellipse 3x^2+4y^2=12 . Then its equation is x^2cos e c^2theta-y^2sec^2theta=1 x^2sec^2theta-y^2cos e c^2theta=1 x^2sin^2theta-y^2cos^2theta=1 x^2cos^2theta-y^2sin^2theta=1

A hyperbola having the transverse axis of length 2sintheta is confocal with the ellipse 3x^2+4y^2=12 . Then its equation is x^2cos e c^2theta-y^2sec^2theta=1 x^2sec^2theta-y^2cos e c^2theta=1 x^2sin^2theta-y^2cos^2theta=1 x^2cos^2theta-y^2sin^2theta=1

(sec^(2)theta-sin^(2)theta)/(tan^(2)theta)=cosec^(2)theta-cos^(2)theta