Home
Class 12
MATHS
[" Let "f(x)=5-|x-2|" and "g(x)=|x+1|,x ...

[" Let "f(x)=5-|x-2|" and "g(x)=|x+1|,x in R." If "f(x)" attair "],[" maximum value at "alpha" and "g(x)" attains minimum value at "],[" then "lim_(x rarr-oo)((x-1)(x^(2)-5x+6))/(x^(2)-6x+8)" is equal to "],[[" (a) "-1/2," (b) "1/2," (c) "-3/2],[" (a) "-1/2," (b) "1/2]],[" (April "201]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=5-|x-2| and g(x)=|x+1|, x in R . If f(x)n attains maximum value at alpha and g(x) attains minimum value of beta , then lim_(xto-alpha beta) ((x-1)(x^(2)-5x+6))/(x^(2)-6x+8) is equal to

Let f(x)=5-|x-2| and g(x)=|x+1|, x in R . If f(x)n artains maximum value at alpha ang g(x) attains minimum value of beta , then lim_(xto-alpha beta) ((x-1)(x^(2)-5x+6))/(x^(2)-6x+8) is equal to

Let f(x)=5-|x-2| and g(x)=|x+1|, x in R . If f(x) attains maximum value at alpha ang g(x) attains minimum value of beta , then underset(xto-alpha beta)lim((x-1)(x^(2)-5x+6))/(x^(2)-6x+8) is equal to (a) -1/2 (b) -3/2 (c) 1/2 (d) 3/2

lim_(x rarr oo)(9x^(2)-2x-7)/(6x^(2)+5x+1

The value of lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)-x+1) equal to

lim_(xrarr oo) ((3x^2+2x+1)/(x^2+x+2))^((6x+1)/(3x+1)) , is equal to

lim_(xrarr oo) ((3x^2+2x+1)/(x^2+x+2))^((6x+1)/(3x+1)) , is equal to

The value of lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)-x+1)) equals

Let f(x)=5-[x-2]g(x)=[x+1]+3 If maximum value of f(x) is alpha& minimum value of f(x) is beta then lim_(x rarr(alpha-beta))((x-3)(x^(2)-5x+6))/((x-1)(x^(2)-6x+8)) is

If f'(2)=6 and f'(1)=4 ,then lim_(x rarr0)(f(x^(2)+2x+2)-f(2))/(f(1+x-x^(2))-f(1)) is equal to ?