Home
Class 12
MATHS
Prove: tan^(-1)(2/3)=1/2tan^(-1)(12/5)...

Prove: `tan^(-1)(2/3)=1/2tan^(-1)(12/5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot

Prove that: tan^(-1)(1/2)+tan^(-1)(1/5)=tan^(-1)(7/9)

Prove that: tan^(-1) \ 2/3=1/2tan^(-1) \ 12/5

Prove that: (tan^(-1)2)/(3)=(1)/(2)(tan^(-1)(12))/(5)

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that 2tan^(-1)((2)/(3))=tan^(-1)((12)/(5))

Prove that : tan^(-1)1/2+tan^(-1)1/5+tan^(-1)1/8=pi/4