Home
Class 12
MATHS
[" 19.A parallelogram is constructed on ...

[" 19.A parallelogram is constructed on "3vec a+vec b" and "],[vec a-4vec b," where "|vec a|=6" and "|vec b|=8" and "vec a" and "vec b" are "],[" anti-pallel.Then the length of the longer diagonal is "],[[" a."40," b "64],[" c."32," d "48]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Find |vec a| and |vec b|, if :(vec a+vec b)vec a-vec b=8 and |vec a|=8|vec b|

find | vec a |, | vec b | if (vec a + vec b) * (vec a-vec b) = 8 and | vec a | = 8 | vec b |

Find |vec a| and |vec b|, if (vec a+vec b)(vec a-vec b)=8 and |vec a|=8|vec b|

Find |vec a| and |vec b|,quad if (vec a+vec b)vec a-vec b=8|vec a|=8|vec b|

The value of [vec a - vec b, vec b - vec c , vec c - vec a] where |vec a| = 1, |vec b| =5, |vec c| =3 is

Find |vec a| and |vec b| if (vec a + vec b).(vec a - vec b) = 3 and 2|vec b| = |vec a| .

Find | vec a| and | vec b| , if ( vec a+ vec b)dot(( vec a- vec b))=8 and |vec a|=8 | vec b|

The value of [vec a-vec b, vec b-vec c, vec c-vec a] where | vec a | = 1, | vec b | = 5, | vec c | = 3, is

If two vectors vec a and vec b such that |vec a|=2, |vec b|= 3 and vec a.vec b = 4 , find |vec a - vec b|

Find | vec a- vec b|, if two vector vec a and vec b are such that | vec a|=2,| vec b|=3 and vec adot vec b=4 .