Home
Class 7
MATHS
Find n such that (2/3)^3xx(2/3)^5=(2/3)^...

Find `n` such that `(2/3)^3xx(2/3)^5=(2/3)^n^(-2)` `((125)/8)^5xx((125)/8)^n=(5/2)^(18)`

Promotional Banner

Similar Questions

Explore conceptually related problems

8-2xx(3-2xx5)

Simplify [(2)/(5)]^(4)((25)/(8))^(3)((125)/(4))^2

Find the value of n if : (2/3 )^3 times (2/3 )^5 = (2/3 )^(n-2)

Find the value of 'n' in each of the following : (2/3)^3xx(2/3)^5=(2/3)^(n-2)

Evaluate ((a^6)^3xx(a^2)^8xx(a^(-3))^4)/((a^2)^5xx(a^5)^2)

(9^(n)xx3^(2)xx3^(n)-(27)^(n))/((3^(3))^(5)xx2^(3))=(1)/(27)

Find the value of n in each of the following: (3/2)^4xx(3/2)^5=(3/2)^(2n)^(+1) (2/3)^(10)xx{(3/2)^2}^5=(2/3)^(2n)^(-2)

Find the value of n in each of the following: (3/2)^4xx(3/2)^5=(3/2)^(2n)^(+1) (2/3)^(10)xx{(3/2)^2}^5=(2/3)^(2n)^(-2)

Evaluate: (i) ((5)/(3)) ^(2 ) xx ((5)/(3)) ^(2) (ii) ((5)/(6))^(6) xx ((5)/(6)) ^(-4) (iii) ((2)/(3)) ^(-3) xx ((2)/(3)) ^(-2) (iv) ((9)/(8)) ^(-3) xx ((9)/(8)) ^(2)