Home
Class 12
MATHS
int(2-a)^(2+a) f(x)dx is equal to (where...

`int_(2-a)^(2+a) f(x)dx` is equal to (where `f(2-a) =f (2+ a) AA ainR)`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(2a)f(x)dx is equal to -

int_(2-a)^(2+a)f(x)dx is equal to [where f(2-alpha)=f(2+alpha) AAalpha in R (a) 2 int_2^(2+a)f(x)dx (b) 2int_0^af(x)dx (c) 2int_2^2f(x)dx (d) none of these

int_(2-a)^(2+a)f(x)dx is equal to [where f(2-alpha)=f(2+alpha) AAalpha in R (a) 2 int_2^(2+a)f(x)dx (b) 2int_0^af(x)dx (c) 2int_2^2f(x)dx (d) none of these

int_(2-a)^(2+a)f(x)dx is equal to [where f(2-alpha)=f(2+alpha) AAalpha in R (a) 2 int_2^(2+a)f(x)dx (b) 2int_0^af(x)dx (c) 2int_2^2f(x)dx (d) none of these

int_(2-a)^(2+a)f(x)dx is equal to [where f(2-alpha)=f(2+alpha) AAalpha in R (a) 2 int_2^(2+a)f(x)dx (b) 2int_0^af(x)dx (c) 2int_2^2f(x)dx (d) none of these

int_(2-a)^(2+a)f(x)dx is equal to [where f(2-alpha)=f(2+alpha) AAalpha in R] (a) 2 int_2^(2+a)f(x)dx (b) 2int_0^af(x)dx (c) 2int_2^2f(x)dx (d) none of these

int_(2-a)^(2+a)f(x)dx is equal to [ where f(2-alpha)=f(2+alpha)AA alpha in R](a)2int_(2)^(2+a)f(x)dx(b)2int_(0)^(a)f(x)dx(c)2int_(2)^(2)f(x)dx(d) none of these

int_(0)^(2) f(x) dx = …... , where f(x) = max {x, x^(2) } .

STATEMENT 1:f(x) is symmetrical about x=2. Then int_(2-a)^(2+a)f(x)dx is equal to 2int_(2)^(2+a)f(x)dx. STATEMENT 2: If f(x) is symmetrical about x=b, then f(b-alpha)=f(b+alpha)AA alpha in R