Home
Class 12
MATHS
[" Whices "f(1)" and "1" in space,are de...

[" Whices "f_(1)" and "1" in space,are definedby "],[x=sqrt(2)x+(sqrt(x)-1)],[[x],[=],[x]=sqrt(mu)y+(1-sqrt(mu))],[" (ii) "y+sqrt(mu)}" ,then "L" is perpendicular to "L" ,for all non-negative reals "lambda" an "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If two lines L, in space,are definedby L_(1)={x=lambda y+(sqrt(lambda)-1},z=(sqrt(lambda)-1)y+sqrt(lambda)} and L_(2)={x=sqrt(mu)y+(1-sqrt(mu)),z=(1-sqrt(mu))y+ then L_(1) is perpendicular to L_(2) for all non-negative reals lambda and mu, such that:

y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

If y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

y=(sqrt(x)+(1)/(sqrt(x)))(1+x+x^(2))

If x, y, z are in A.P then 1/(sqrt(x) + sqrt(y)) , 1/(sqrt(z) + sqrt(x)) , 1/(sqrt(y) + sqrt(z)) are in

if x=sqrt(3)+(1)/(sqrt(3)) and y=sqrt(3)-(1)/(sqrt(3)) then x^(2)-y^(2) is

If y=(sqrt(x)+1/sqrt(x)).(sqrt(x)-1/sqrt(x)) then dy/dx = ….. .

If e^(y)=(sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x))," then "(dy)/(dx)=