Home
Class 12
MATHS
lim(x->0)(3sqrt(1+x^2)-4sqrt(1-2x))/(x+x...

`lim_(x->0)(3sqrt(1+x^2)-4sqrt(1-2x))/(x+x^2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sqrt(1+x)-sqrt(1-x))/(2x) is equal to

lim_(x rarr2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2) is equal to

lim_(x rarr0)(sqrt(1-x^(2))-sqrt(1+x^(2)))/(2x^(2))

lim_(x to 0) (sqrt(1 + 3x) + sqrt(1 - 3x))/(1 + 3x) is equal to

lim_(x to 0) (sqrt(1 + 3x) + sqrt(1 - 3x))/(1 + 3x) is equal to

lim_(xrarr0) (sqrt(1-x^(2))-sqrt(1+x^(2)))/(2x^(2))

lim_(xrarr0) (sqrt(1-x^(2))-sqrt(1+x^(2)))/(2x^(2))

lim_(x to10) (sqrt3+x-sqrt5-x)/(x^2-1) is equal to:

lim_(x to 0) (sqrt(1 + x + x^(2)) - sqrt(x + 1))/(2X^(2)) is equal to

lim_(x to 0) (sqrt(1 + x + x^(2)) - sqrt(x + 1))/(2X^(2)) is equal to