Home
Class 12
MATHS
" If "omega(!=1)" is a cube root of unit...

" If "omega(!=1)" is a cube root of unity then "|[1,1+i+omega^(2),omega^(2)],[1-i,-1,omega^(2)-1],[-i,-i+omega-1,-1]|=

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is the complex cube root of unity then |[1,1+i+omega^2,omega^2],[1-i,-1,omega^2-1],[-i,-i+omega-1,-1]|=

If omega is the complex cube root of unity then |[1,1+i+omega^2,omega^2],[1-i,-1,omega^2-1],[-i,-i+omega-1,-1]|=

If omega is the complex cube root of unity then |[1,1+i+omega^2,omega^2],[1-i,-1,omega^2-1],[-i,-i+omega-1,-1]|=

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

If omega(ne 1) is a cube root of unity, then |{:(1,1+omega^(2),omega^(2)),(1-i,-1,omega^(2)-1),(-i,-1+omega,-1):}| equals :

If omega is a cube root of unity, then 1+ omega^(2)= …..

If (omega ne1) is a cube root of unity , then {:(1 , 1 + i+ omega^(2) , omega^(2)) , (1-i, -1 , omega^(2) -1) , (-i , -1 + omega - i, -1):}|

If omega is a cube roots of unity then (1-omega)(1-omega^(2))(1-omega^(4))(1-omega^(8))=

If omega is the complex cube root of unity then 1quad 1+i+omega^(2),omega^(2)1-i,-1-iquad -i+omega-1]|=