Home
Class 12
MATHS
int0^(2npi) {|sinx|-|1/2sinx|}dx= (A) n ...

`int_0^(2npi) {|sinx|-|1/2sinx|}dx=` (A) `n` (B) `2n` (C) `-2n` (D) `1/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : int_(-pi/2)^( pi/2 ) | sinx | dx = ( a ) -2 ( b ) 2 ( c ) -1 ( d ) 1

Evaluate : int_(-pi/2)^( pi/2 ) | sinx | dx = ( a ) -2 ( b ) 2 ( c ) -1 ( d ) 1

int_-1^1 (sinx+x^2)/(3-|x|)dx= (A) 0 (B) 2int_0^1 sinx/(3-|x|)dx (C) 2int_0^1 x^2/(3-|x|)dx (D) 2int_0^1 (sinx+x^2)/(3-|x|)dx

int_-1^1 (sinx+x^2)/(3-|x|)dx= (A) 0 (B) 2int_0^1 sinx/(3-|x|)dx (C) 2int_0^1 x^2/(3-|x|)dx (D) 2int_0^1 (sinx+x^2)/(3-|x|)dx

If A_n=int_0^(pi/2)(sin(2n-1)x)/(sinx)dx ,B_n=int_0^(pi/2)((sinn x)/(sinx))^2 dx for n inN , Then (A) A_(n+1)=A_n (B) B_(n+1)=B_n (C) A_(n+1)-A_n=B_(n+1) (D) B_(n+1)-B_n=A_(n+1)

If A_n=int_0^(pi/2)(sin(2n-1)x)/(sinx)dx ,B_n=int_0^(pi/2)((sinn x)/(sinx))^2 dx for n inN , Then (A) A_(n+1)=A_n (B) B_(n+1)=B_n (C) A_(n+1)-A_n=B_(n+1) (D) B_(n+1)-B_n=A_(n+1)

The value of the definite integral int_(0)^(2npi) max (sinx,sin^(-1)( sinx)) dx equals to (where, n in l)

The value of the definite integral int_(0)^(2npi) max (sinx,sin^(-1)( sinx)) dx equals to (where, n in l)

The value of the definite integral int_(0)^(2npi) max (sinx,sin^(-1)( sinx)) dx equals to (where, n in l)