Home
Class 12
PHYSICS
The .(92)U^(235) absorbs a slow neturon ...

The `._(92)U^(235)` absorbs a slow neturon (thermal neutron) & undergoes a fission represented by `._(92)U^(235)+._(0)n^(1)rarr._(92)U^(236)rarr._(56)Ba^(141)+_(36)Kr^(92)+3_(0)n^(1)+E`. Calculate:
The energy released when `1 g` of `._(92)U^(235)` undergoes complete fission in `N` if `m=[N]` then find `(m-2)/(5)`. `[N]` greatest integer
Given
`._(92)U^(235)=235.1175"amu (atom)"`,
`._(56)Ba^(141)=140.9577 "amu (atom)"`,
`._(36)r^(92)=91.9263 "amu(atom)" , ._(0)n^(1)=1.00898 "amu", 1 "amu"=931 MeV//C^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Calculate the amount of energy released when 1 kg of ""_(92)^(235)"U" undergoes fission reaction.

The reaction ._(92)U^(235) + ._(0)n^(1) rarr ._(56)Ba^(140) + ._(36)Kr^(93) + 3 ._(0)n^(1) represents

The ._(92)^(235)U absorbs a slow neutron (thermal neutron) & undergoes a fission represented by (i) The energy release E per fission. (ii) The energy release when 1g of ._(92)^(236)U undergoes complete fission. Given : ._(92)^(235)U = 235.1175 am u (atom), ._(56)^(141)Ba = 140.9577 am u (atom), ._(36)^(92)Kr = 91.9264 am u (atom), ._(0)^(1)n = 1.00898 am u .

""_(92)^(235)U+nto""_(92)^(235)Uto fission product + Neutron 3.20xx10^(-11)J . The energy released when 1 g of ""_(92)^(235)U undergoes fission is

In equation ._(92)U^(235) + ._(0)n^1 to ._(56)Ba^(144) + ._(36)Kr^(89) + X : X is-