Home
Class 11
PHYSICS
A longitudinal standing wave y = a cos ...

A longitudinal standing wave ` y = a cos kx cos omega t` is maintained in a homogeneious medium of density `rho`. Here `omega` is the angular speed and `k` , the wave number and `a` is the amplitude of the standing wave . This standing wave exists all over a given region of space.
The space density of the potential energy `PE = E_(p)(x , t)` at a point `(x , t)` in this space is

Promotional Banner

Similar Questions

Explore conceptually related problems

A longitudinal standing wave y = a cos kx cos omega t is maintained in a homogeneious medium of density rho . Here omega is the angular speed and k , the wave number and a is the amplitude of the standing wave . This standing wave exists all over a given region of space. The space density of the kinetic energy . KE = E_(k) ( x, t) at the point (x, t) is given by

A longitudinal standing wave y = a cos kx cos omega t is maintained in a homogeneious medium of density rho . Here omega is the angular speed and k , the wave number and a is the amplitude of the standing wave . This standing wave exists all over a given region of space. The space density of the kinetic energy . KE = E_(k) ( x, t) at the point (x, t) is given by

A longitudinal standing wave y = a cos kx cos omega t is maintained in a homogeneious medium of density rho . Here omega is the angular speed and k , the wave number and a is the amplitude of the standing wave . This standing wave exists all over a given region of space. If a graph E ( = E_(p) + E_(k)) versus t , i.e., total space energy density verus time were drawn at the instants of time t = 0 and t = T//4 , between two successive nodes separated by distance lambda//2 which of the following graphs correctly shows the total energy (E) distribution at the two instants.

A longitudinal standing wave y = a cos kx cos omega t is maintained in a homogeneious medium of density rho . Here omega is the angular speed and k , the wave number and a is the amplitude of the standing wave . This standing wave exists all over a given region of space. If a graph E ( = E_(p) + E_(k)) versus t , i.e., total space energy density verus time were drawn at the instants of time t = 0 and t = T//4 , between two successive nodes separated by distance lambda//2 which of the following graphs correctly shows the total energy (E) distribution at the two instants.

A longitudinal standing wave xi a cos kx. Cos omega t is maintained in a homogeneous medium of density rho . Find the expressions for the space density of (a) potential energy w_(p)(x,t), (b) kinetic energy w_(k)(x,t), Plot the space density distribution of the total energy w in the space between the displacement nodes at the moments t=0 and t=T//4 , where T is oscillation period.

A standing wave xi= a sin kx. Cos omegat is maintained in a homogeneous rod with cross - sectional area S and density rho . Find the total mechanical energy confined between the sections corresponding to the adjacent displacement nodes.

A standing wave xi= a sin kx. Cos omegat is maintained in a homogeneous rod with cross - sectional area S and density rho . Find the total mechanical energy confined between the sections corresponding to the adjacent displacement nodes.

A sound wave y = A sin (omega t- kx) is propagating through a medium of density 'rho' . Then the sound energy per unit volume is