Home
Class 11
MATHS
If f(x) is cubic polynomial with real c...

If `f(x)` is cubic polynomial with real coefficients, `alpha lt beta lt gamma and x_1 lt x_2` be that `f(alpha)=f(beta)=f(gamma)=f'(x_1)=f'(x_2)=0` then possible graph of (assuming y-axis vertical)

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=alpha x+beta and f(0)=f^(1)(0)=1 then f(2) =

If f(x)= alpha x+beta and f(0)=f^(')(0)=1 then f(2) =

Let f(x) be a second degree polynomial function such that f(-1)=f(1) and alpha,beta,gamma are in A.P. Then, f'(alpha),f'(beta),f'(gamma) are in

Let f(x) be a second degree polynomial function such that f(-1)=f(1) and alpha,beta,gamma are in A.P. Then, f'(alpha),f'(beta),f'(gamma) are in

Let alpha,beta and gamma be such that 0 lt alpha lt beta lt gamma lt 2pi for any x in R if cos (x+alpha)+cos(x + beta)+cos(x+gamma)=0 then tan(gamma-alpha) =

Let int_(alpha)^( beta)(f(alpha+beta-x))/(f(x)+f(alpha+beta-x))dx=4 then

f(alpha)=f'(alpha)=f''(alpha)=0,f(beta)=f'(beta)=f''(beta)=0 and f(x) is polynomial of degree 6, then

If alpha < beta < gamma and sin gamma cos alpha=1, where alpha,gamma in[pi,2 pi], then the least integral value of f(x) = | x - alpha| + | x - beta| + |x - gamma| is

If alpha < beta < gamma and sin gamma cos alpha=1, where alpha,gamma in[pi,2 pi], then the least integral value of f(x) = | x - alpha| + | x - beta| + |x - gamma| is