Home
Class 11
MATHS
If -5+ibeta,-5+i y ,beta^2!=gamma^2;beta...

If `-5+ibeta,-5+i y ,beta^2!=gamma^2;beta, y in R` are roots of `x^3+15x^2+cx+860=0, c in R` , then

Promotional Banner

Similar Questions

Explore conceptually related problems

if alpha,beta,gamma are the roots of 2x^(3)-5x^(2)-14x+8=0 then find alpha+beta+gamma

Let , alpha ,beta,gamma be the roots of x^3+px^2+qx+r=0 . Then find the (i) sumalpha^2

If alpha, beta, gamma are roots of x^(3) + qx + r = 0 , then sum (alpha beta )^(2) =

If alpha, beta,gamma are roots of x^(3) - px^(2) + qx - r = 0 then sum alpha (beta + gamma) =

If alpha, beta, gamma be the roots of x^(3) + a^(3) = 0 (a in R) , then the number of equation(s) whose roots are ((alpha)/(beta))^(2) and ((alpha)/(gamma))^(2) , is

If alpha, beta, gamma be the roots of x^(3) + a^(3) = 0 (a in R) , then the number of equation(s) whose roots are ((alpha)/(beta))^(2) and ((alpha)/(gamma))^(2) , is

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then sum(alpha - beta )^(2) =

If alpha, beta, gamma are roots of the equation x^(3) - px^(2) + qx - r = 0 , then sum alpha^(2) beta =

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then (alpha + beta) (beta + gamma)(gamma + alpha) =