Home
Class 12
MATHS
[" The value of the integral "int(0)^(lo...

[" The value of the integral "int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx" is "],[[" (a) "3+2 pi," (b) "4-pi," (c) "2+pi," (d) None of these "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(ln13)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

The value of the integral int_0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx

The value of the integral int_0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx

int_0^(log 5) e^(x) sqrt(e^(x)-1)/(e^(x)+3) dx =

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The value of the integral overset(log5)underset(0)int(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx , is