Home
Class 12
MATHS
[" For "a>0,a!=1," the number of values ...

[" For "a>0,a!=1," the number of values of "x],[" satisyy'ng the eq" "2log_(x)(a)+log_(ax)(a)+],[3log_(a)2_(x)(a)=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

The values of x, satisfying the equation for AA a>0,2log_(x)a+log_(ax)a+3log_(a^(2)x)a=0 are

The values of x, satisfying the equation for AA a > 0, 2log_(x) a + log_(ax) a +3log_(a^2 x)a=0 are

The values of x, satisfying the equation for AA a > 0, 2log_(x) a + log_(ax) a +3log_(a^2 x)a=0 are

The values of x, satisfying the equation for AA a > 0, 2log_(x) a + log_(ax) a +3log_(a^2 x)a=0 are

The values of x, satisfying the equation for AA a > 0, 2log_(x) a + log_(ax) a +3log_(a^2 x)a=0 are

log_((1)/(2))log_(3)(x^(2)+5)+1<=0

If a gt 0 , 2 log_(x) a + log_(ax) a + 3 log_(a^(2)x) a = 0 then x =

The value of x, satisfying the inequality log_(0.3)(x^(2)+8)>log_(0.3)9x, lies in

The number of values of x if log_4(2log_3(1+log_2(1+3log_3x)))=1/2

Find the values of x satisfying the inequalities: log_(0.1)(4x^(2)-1)>log_(0.1)3x