Home
Class 11
MATHS
The ellipse 4x^2+9y^2=36 and the hyperbo...

The ellipse `4x^2+9y^2=36` and the hyperbola `a^2x^2-y^2=4` intersect at right angles. Then the equation of the circle through the points of intersection of two conics is

Promotional Banner

Similar Questions

Explore conceptually related problems

The ellipse 4x^(2)+9y^(2)=36 and the hyperbola a^(2)x^(2)-y^(2)=4 intersect at right angles.Then the equation of the circle through the points of intersection of two conics is

The ellipse 4x^(2) + 9y^(2) = 36 and the hyperbola 4x^(2) – y^(2) = 4 have the same foci and they intersect at right angles then the equation of the circle through the points of intersection of two conics is

The circle x^2+y^2-8x = 0 and hyperbola x^2 /9 - y^2 /4=1 intersect at the points A and B. Then the equation of the circle with AB as its diameter is

The circle x^2+y^2-8x = 0 and hyperbola x^2 /9 - y^2 /4=1 intersect at the points A and B. Then the equation of the circle with AB as its diameter is

The circle x^2+y^2-8x = 0 and hyperbola x^2 /9 - y^2 /4=1 intersect at the points A and B. Then the equation of the circle with AB as its diameter is

The circle x^2+y^2-8x=0 and hyperbola x^2/9-y^2/4=1 intersect at the points A and B Equation of the circle with AB as its diameter is

The ellipse 4x^(2)+8y^(2)=64 and the circle x^(2)+y^(2)=9 intersect at points where the y-coordinates is

The circle x^(2)+y^(2)8x=0 and hyperbola (x^(2))/(9)(y^(2))/(4)=1 intersect at points A and B .Then Equation of the circle with A B as its diameter is

Prove that the ellipse x^(2)+4y^(2)=8 and the hyperbola x^(2)-2y^(2)=4 intersect orthogonally .

The circle x^(2)+y^(2)-8x=0 and hyperbola (x^(2))/(9)-(y^(2))/(4)=1 intersect at the points A and B Equation of the circle with AB as its diameter is