Home
Class 12
MATHS
Iff(x)=int1^x(logt)/(1+t+t^2)dxAAxlt=1,t...

`Iff(x)=int_1^x(logt)/(1+t+t^2)dxAAxlt=1,t h e np rov et h a tf(x)f(1/x)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(1)^(x)(logt)(1+t+t^(2))dt AAxge1 , then prove that f(x)=f(1/x) .

If f(x)=int_(1)^(x)(logt)(1+t+t^(2))dt AAxge1 , then prove that f(x)=f(1/x) .

f(x)=int_1^xlogt/(1+t+t^2)dt (xge1) then prove that f(x) =f(1/x)

If f(x)=int_(1)^(x)(logt)/(1+t+t^(2))dt,AAxge1 then f(x) a) f(1/x) b) f((1)/(x^(2))) c) f(x^(2)) d) -f(1/x)

Ify=int_0^xf(t)sin{k(x-t)}dt ,t h e np rov et h a t(d^2y)/(dx^2)+k^2y=kf(x)dot

Ify=int_0^xf(t)sin{k(x-t)}dt ,t h e np rov et h a t(d^2y)/(dx^2)+k^2y=kf(x)dot

Ify=int_0^xf(t)sin{k(x-t)dt ,t h e np rov et h a t(dt^2y)/(dx^2)+k^2y=kf(x)dot

Statement-1: If f(x)=int_(1)^(x) (log_(e )t)/(1+t+t^(2))dt , then f(x)=f((1)/(x)) for all x gr 0 . Statement-2:If f(x) =int_(1)^(x) (log_(e )t)/(1+t)dt , then f(x)+f((1)/(x))=((log_(e )x)^(2))/(2)

If f(x)=int_(1)^(x)(logt)/(1+t+t^(2)) , AAx ge 1 , then f(2) is equal to