Home
Class 12
MATHS
If I1=intx^1 1/(1+t^2)dt and I2=int1^(1/...

If `I_1=int_x^1 1/(1+t^2)dt` and `I_2=int_1^(1/x) 1/(1+t^2)dt` for `xgt0` then (A) `I_1=I_2` (B) `I_1gtI_2` (C) `I_1ltI_2` (D) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(1) = int_(x)^(1) (1)/(1+t^(2))dt and I_(2)=int_(1)^(1/x) (1)/(1+t^(2))dt for x gt0 , then

If I_(1)=int_(x)^(1)(1)/(1+t^(2)) dt and I_(2)=int_(1)^(1//x)(1)/(1+t^(2)) dt "for" x gt0 then,

I=int sqrt(1-t^(2))dt

Let I_(1)=int_(1)^(2)(1)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

Let I_1=int_0^1e^(x^2)dx and I_2=int_0^(1)2x^(2)e^(x^2)dx then the value of I_1 +I_2 is equal to

If I_(n)=int (t^(n))/(1+t^(2))dt, then I_(n-2)=