Home
Class 12
MATHS
Consider the following statements : S1: ...

Consider the following statements : `S_1`: `lim_(x->0) [x]/x` is an indeterminate form (where [:] denoet greatest integer function). `S_2 : lim_(x->oo)sin(3^x)/3^x=0` and `S_3 : lim_(x->oo) sqrt((x-sinx)/(x+cos^2x))` does not exist. `S_4 : lim_(n->oo)((n + 2)! + (n+1)!)/(n+3)!) (n in N) =0` State, in order, whether `S_1,S_2,S_3,S_4` are t(or false

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo)sin(x/2^n)/(x/2^n)

f(x) = lim_(n->oo) sin^(2n)(pix)+[x+1/2] , where [.] denotes the greatest integer function, is

S1: lim_(n->oo) (2^n + (-2)^n)/2^n does not exist S2: lim_(n->oo) (3^n + (-3)^n)/4^n does not exist

lim_(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the greatest integer function, is

lim_(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the greatest integer function, is

lim_(x rarr oo) (logx^(n)-[x])/([x]) , where n in N and [.] denotes the greatest integer function, is

lim_(x -> oo) x^n / e^x = 0 , (n is an integer) for

Evaluate lim{n-> oo) ([1.2x]+[2.3x]+.....+[n.(n+1)x])/(n^3)), where [.] denotes greatest integer function.

f(x)=lim_(n rarr oo)sin^(2n)(pi x)+[x+(1)/(2)], where [.] denotes the greatest integer function,is

lim_(n rarr oo) 5^(((2x)/(x+3)) =