Home
Class 12
MATHS
If x^y=e^(x-y), show that (dy)/(dx)=(log...

If `x^y=e^(x-y),` show that `(dy)/(dx)=(logx)/({log(x e)}^2)`

Text Solution

Verified by Experts

`x^y = e^(x-y)`
Taking log both sides,
`log(x^y) = log(e^(x-y))`
`=>ylogx = (x-y)loge`
As `log e = 1`,
`=>ylogx+y = x`
`=>y(1+logx) = x`
`y = x/(1+logx)`
...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CUET MOCK TEST 2022

    XII BOARDS PREVIOUS YEAR|Exercise Question|49 Videos

Similar Questions

Explore conceptually related problems

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), Prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2)).

If x^(y)=e^(x-y), show that (dy)/(dx)=(y(x-y))/(x^(2))

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(logx)/((1+logx)^(2))

x^(y)=e^(x-y) so,prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x=e^(x/y), prove that (dy)/(dx)=(x-y)/(x log x)