Home
Class 14
MATHS
log(8)m+log(8)(1)/(6)=(2)/(3)...

log_(8)m+log_(8)(1)/(6)=(2)/(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(8)m + log_(6) (1)/(6) = (2)/(3), then m is equal to

Express log _(4)a+log_(8)a^((1)/(3))+(1)/(log_(a)8) as a logarithm to the base 2.

If 3^(log_(3)7)+7^(log_(8)((1)/(8)))+log_(0.bar(3))(3)=(a)/(b) , a ,b in N HCF(a , b)=1 then

If x = log_((1)/(2)).(4)/(3).log_(2).(1)/(3). log_((2)/(3)) 0.8 , then ______.

If log_((1)/(8))(log_((1)/(4))(log_((1)/(2))x))=(1)/(3)th n x is

The sum of the values of x satisfying the equation 9(log_(8)x)^(3)+log_(8)(x^(11))=(log_(27)64)(log_(8)27)+18(log_(8)x)^(2) is greater than or equals to

if log_(8)x+log_(x)8=(10)/(3) then x=

log_(3)(5+x)+log_(8)8=2^(2)

" 4) "log_(8)1+log_(8)2+log_(8)8=log_(8)(1+2+3)

Simplify each of the following: log_(8)sqrt(6)+log_(8)(sqrt((2)/(3)))-log_(8)(log_(3)9)